3,375 research outputs found

    New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces

    Full text link
    A generalized version of Bertrand's theorem on spherically symmetric curved spaces is presented. This result is based on the classification of (3+1)-dimensional (Lorentzian) Bertrand spacetimes, that gives rise to two families of Hamiltonian systems defined on certain 3-dimensional (Riemannian) spaces. These two systems are shown to be either the Kepler or the oscillator potentials on the corresponding Bertrand spaces, and both of them are maximally superintegrable. Afterwards, the relationship between such Bertrand Hamiltonians and position-dependent mass systems is explicitly established. These results are illustrated through the example of a superintegrable (nonlinear) oscillator on a Bertrand-Darboux space, whose quantization and physical features are also briefly addressed.Comment: 13 pages; based in the contribution to the 28th International Colloquium on Group Theoretical Methods in Physics, Northumbria University (U.K.), 26-30th July 201

    Binary trees, coproducts, and integrable systems

    Get PDF
    We provide a unified framework for the treatment of special integrable systems which we propose to call "generalized mean field systems". Thereby previous results on integrable classical and quantum systems are generalized. Following Ballesteros and Ragnisco, the framework consists of a unital algebra with brackets, a Casimir element, and a coproduct which can be lifted to higher tensor products. The coupling scheme of the iterated tensor product is encoded in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new appendices adde

    From Quantum Universal Enveloping Algebras to Quantum Algebras

    Full text link
    The ``local'' structure of a quantum group G_q is currently considered to be an infinite-dimensional object: the corresponding quantum universal enveloping algebra U_q(g), which is a Hopf algebra deformation of the universal enveloping algebra of a n-dimensional Lie algebra g=Lie(G). However, we show how, by starting from the generators of the underlying Lie bialgebra (g,\delta), the analyticity in the deformation parameter(s) allows us to determine in a unique way a set of n ``almost primitive'' basic objects in U_q(g), that could be properly called the ``quantum algebra generators''. So, the analytical prolongation (g_q,\Delta) of the Lie bialgebra (g,\delta) is proposed as the appropriate local structure of G_q. Besides, as in this way (g,\delta) and U_q(g) are shown to be in one-to-one correspondence, the classification of quantum groups is reduced to the classification of Lie bialgebras. The su_q(2) and su_q(3) cases are explicitly elaborated.Comment: 16 pages, 0 figures, LaTeX fil

    A maximally superintegrable deformation of the N-dimensional quantum Kepler–Coulomb system

    Get PDF
    XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21,) 12–16 June 2013, Prague, Czech RepublicThe N-dimensional quantum Hamiltonian Hˆ = − ~ 2 |q| 2(η + |q|) ∇ 2 − k η + |q| is shown to be exactly solvable for any real positive value of the parameter η. Algebraically, this Hamiltonian system can be regarded as a new maximally superintegrable η-deformation of the N-dimensional Kepler–Coulomb Hamiltonian while, from a geometric viewpoint, this superintegrable Hamiltonian can be interpreted as a system on an N-dimensional Riemannian space with nonconstant curvature. The eigenvalues and eigenfunctions of the model are explicitly obtained, and the spectrum presents a hydrogen-like shape for positive values of the deformation parameter η and of the coupling constant k

    Twisted Conformal Algebra so(4,2)

    Get PDF
    A new twisted deformation, U_z(so(4,2)), of the conformal algebra of the (3+1)-dimensional Minkowskian spacetime is presented. This construction is provided by a classical r-matrix spanned by ten Weyl-Poincare generators, which generalizes non-standard quantum deformations previously obtained for so(2,2) and so(3,2). However, by introducing a conformal null-plane basis it is found that the twist can indeed be supported by an eight-dimensional carrier subalgebra. By construction the Weyl-Poincare subalgebra remains as a Hopf subalgebra after deformation. Non-relativistic limits of U_z(so(4,2)) are shown to be well defined and they give rise to new twisted conformal algebras of Galilean and Carroll spacetimes. Furthermore a difference-differential massless Klein-Gordon (or wave) equation with twisted conformal symmetry is constructed through deformed momenta and position operators. The deformation parameter is interpreted as the lattice step on a uniform Minkowskian spacetime lattice discretized along two basic null-plane directions.Comment: 20 pages, LaTe

    On the biparametric quantum deformation of GL(2) x GL(1)

    Full text link
    We study the biparametric quantum deformation of GL(2) x GL(1) and exhibit its cross-product structure. We derive explictly the associated dual algebra, i.e., the quantised universal enveloping algebra employing the R-matrix procedure. This facilitates construction of a bicovariant differential calculus which is also shown to have a cross-product structure. Finally, a Jordanian analogue of the deformation is presented as a cross-product algebra.Comment: 16 pages LaTeX, published in JM

    The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra

    Full text link
    Using a contraction procedure, we construct a twist operator that satisfies a shifted cocycle condition, and leads to the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra. The corresponding universal Rh(y){\cal R}_{h}(y) matrix obeys a Gervais-Neveu-Felder equation associated with the U_{h;y}(sl(2)) algebra. For a class of representations, the dynamical Yang-Baxter equation may be expressed as a compatibility condition for the algebra of the Lax operators.Comment: Latex, 9 pages, no figure
    • …
    corecore